• Downloads
  • ! Read Me !
  • Μαθήματα
  • Φοιτητικά
  • Τεχνικά Θέματα
  • Συζητήσεις
  • Happy Hour!
  • About THMMY.gr
 V  < 
Search:  
Welcome, Guest. Please login or register.
September 16, 2025, 23:57:03 pm

Login with username, password and session length
Links
  Thmmy.gr portal
   Forum
   Downloads
   Ενεργ. Λογαριασμού
   Επικοινωνία
  
  Χρήσιμα links
   Σελίδα τμήματος
   Βιβλιοθήκη Τμήματος
   Elearning
   Φοιτητικά fora
   Πρόγραμμα Λέσχης
   Πρακτική Άσκηση
   Ηλεκτρονική Εξυπηρέτηση Φοιτητών
   Διανομή Συγγραμμάτων
   Ψηφιακό Καταθετήριο Διπλωματικών
   Πληροφορίες Καθηγητών
   Instagram @thmmy.gr
   mTHMMY
  
  Φοιτητικές Ομάδες
   ACM
   Aristurtle
   ART
   ASAT
   BEAM
   BEST Thessaloniki
   EESTEC LC Thessaloniki
   EΜΒ Auth
   IAESTE Thessaloniki
   IEEE φοιτητικό παράρτημα ΑΠΘ
   SpaceDot
   VROOM
   Panther
  
Πίνακας Ελέγχου
Welcome, Guest. Please login or register.
September 16, 2025, 23:57:03 pm

Login with username, password and session length

Αναζήτηση

Google

THMMY.gr Web
Πρόσφατα
Συμβάσεις και εταιρείες
by Nikos_313
[Today at 23:02:05]

[Στοχαστικά Σήματα και Δι...
by Nikos_313
[Today at 22:54:08]

Πρόγραμμα Σπουδών Ακαδημα...
by Fraser
[Today at 20:35:03]

Εργασία στην METLEN, Γνώμ...
by Επίδοξος
[Today at 20:05:46]

Μέλος του μήνα - Ιούλιος ...
by Katarameno
[Today at 19:37:40]

Αποτελέσματα Εξεταστικής ...
by le papillon
[Today at 17:05:17]

[Τηλεπικοινωνιακά Συστήμα...
by Mr Watson
[Today at 10:31:04]

Ευρωμπάσκετ 2025
by Katarameno
[Today at 02:46:49]

Πότε θα βγει το μάθημα; -...
by Katarameno
[Today at 01:08:33]

Τι ακούτε αυτήν τη στιγμή...
by Katarameno
[September 15, 2025, 22:10:40 pm]

Users <=22 OR >=222
by Mr Watson
[September 14, 2025, 19:36:18 pm]

[ΑΡΑΓΕ Attack] ΝΑ ΕΠΙΣΤΡΕ...
by Aris★
[September 14, 2025, 14:31:33 pm]

[Τομέας Ηλεκτρονικής] Μαθ...
by Nikos_313
[September 14, 2025, 13:29:36 pm]

Των συνειρμών το παίγνιο....
by chatzikys
[September 14, 2025, 13:20:18 pm]

Καλός βαθμός στην σχολή
by Σουλης
[September 14, 2025, 13:00:41 pm]

Τα παράσιτα ανάμεσά μας
by okan
[September 14, 2025, 03:20:17 am]

Αυνανισμος: Κινδυνοι, προ...
by Nikolaras
[September 13, 2025, 20:57:09 pm]

Ποιο τραγούδι ακούσατε 5+...
by Katarameno
[September 13, 2025, 17:33:17 pm]

[Λογική Σχεδίαση] Γενικές...
by mdimitrig
[September 13, 2025, 17:25:47 pm]

Αρχείο Ανακοινώσεων [Arch...
by Nikos_313
[September 13, 2025, 10:53:14 am]
Στατιστικά
Members
Total Members: 10012
Latest: MichelRiemann
Stats
Total Posts: 1428123
Total Topics: 31765
Online Today: 577
Online Ever: 2093
(April 17, 2025, 08:47:49 am)
Users Online
Users: 37
Guests: 256
Total: 293
kosovi
athena_apo
stefpapa21
Katarameno
AcDimitri
Xontroulis
Vicky1213!
melisste22
GiorgosSarak
Wibvious
Mr Watson
AZMAGILLIAN
Λέσχη Επιστημόνων
iliaspapam
soktas
tank
tasos potsakis
Eirini25
DimStyl
Psycher
johnny_ece
RivenT
Saint_GR
PolarBear
VeGGoS
George_RT
Petross
anastas1a
RogueSoftware
alekos87
christina02
Εμφάνιση

Νέα για πρωτοετείς
Είσαι πρωτοετής;... Καλώς ήρθες! Μπορείς να βρεις πληροφορίες εδώ. Βοήθεια για τους καινούργιους μέσω χάρτη.
Κατεβάστε εδώ το Android Application για εύκολη πρόσβαση στο forum.
Ανεβάζετε τα θέματα των εξετάσεων στον τομέα Downloads με προσοχή στα ονόματα των αρχείων!

Νέα!
Συμβουλές καλής χρήσης του φόρουμ: Youtube embed code and links, Shoutbox, Notify, ...
Δείτε περισσότερα εδώ...
THMMY.gr > Forum > Μαθήματα Βασικού Κύκλου > 1ο Εξάμηνο > Λογισμός Ι (Moderators: Tasos Bot, tzortzis, Nekt) > [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
0 Members and 2 Guests are viewing this topic.
Pages: 1 ... 4 5 [6] 7 8 ... 11 Go Down Print
Author Topic: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011  (Read 22794 times)
zisis00
Καταξιωμένος/Καταξιωμένη
***
Posts: 176


View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #75 on: February 01, 2011, 19:59:24 pm »

Quote from: hetfield on February 01, 2011, 19:57:50 pm
genika gia ola ta megalitera eth ektos 1ou diladi?

έτσι τουλάχιστον είπε ο ξένος στο μάθημα..
Logged
ForestBlack
Εθισμένος στο ΤΗΜΜΥ.gr
*****
Posts: 607



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #76 on: February 02, 2011, 15:24:19 pm »

θα μπορουσε καποιος να λυσει αυτη την ασκηση?


α) Να ελεγχθεί ως προς τη σύγκλιση της η αριθμητική σειρά .    Σ (n^n) / ((2^n) *( n!) )
Logged
dK_on_the_way
Νεούλης/Νεούλα
*
Posts: 30



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #77 on: February 03, 2011, 22:06:23 pm »

Quote from: ForestBlack on October 26, 2010, 11:09:34 am
ροθο

αν εχω καταλαβει σωστα
μια ακολουθια ειτε συκλινει ειτε απολκλινει στο +-απειρο ειτε κυμαινεται.
στο βιβλιο του ξενου στο αντιστοιχο κεφαλαιο εχει μονο τους ορισμους  κ μερικα παραδειγματα που μεσω αυτων αποδεικνυει τι κανει η ακολουθια.

ο ροθος μας εδωσε κατι ασκησεις-εργασια κ μια απο αυτες ζηταει
: Να εξεταστουν ως προς την συγκλιση οι παρακατω ακολουθιες και να βρεθουν τα ορια των.

  an= (-1)^n /2*n+1
  an=(3*n+2)/n^2 +n+1
κλπ

η απορια μου ειναι: πως ακριβως δουλευω μια τετοια ασκηση.  Tongue


Η "επίμαχη" πρώτη ακολουθία έχει όριο 1, μιας και υπακούει στον γενικότερο κανόνα μηδενική επι φραγμένη.
lim(1/2*n)=0 => liman=0+1=1.
Βέβαια ο ορισμός της ακολουθίας έχει ασάφειες.
 π.χ an=(-1)^n/(2*n+1) (όριο 0) ή
an=(-1)^n/(2*n)+1 (όριο 1 όπως προανέφερα)
Logged
pepper ann
Μόνιμος κάτοικος ΤΗΜΜΥ.gr
******
Gender: Female
Posts: 1132



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #78 on: February 03, 2011, 22:30:06 pm »

Quote from: ForestBlack on February 02, 2011, 15:24:19 pm
θα μπορουσε καποιος να λυσει αυτη την ασκηση?


α) Να ελεγχθεί ως προς τη σύγκλιση της η αριθμητική σειρά .    Σ (n^n) / ((2^n) *( n!) )
γιατί δεν δοκιμάζεις κριτήριο λόγου? Wink
Logged
ForestBlack
Εθισμένος στο ΤΗΜΜΥ.gr
*****
Posts: 607



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #79 on: February 03, 2011, 22:43:30 pm »

εφαρμοζοντας το κριτηριο του d alembert εχουμε Lim [(n+1)^n  / 2n^n] (n--> ΙΝF )

που μας κανει 1/2
αρα συγκλινει

πρεπει να ξεχνουσα το 2 στον αριθμητη γτ εβγαζα 1 κ αρα δν βολευε το εν λογω θεωρημα..

lack of concentration...

thnks!
Logged
dK_on_the_way
Νεούλης/Νεούλα
*
Posts: 30



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #80 on: February 03, 2011, 22:53:03 pm »

Quote from: ForestBlack on February 03, 2011, 22:43:30 pm
εφαρμοζοντας το κριτηριο του d alembert εχουμε Lim [(n+1)^n  / 2n^n] (n--> ΙΝF )

που μας κανει 1/2
αρα συγκλινει

πρεπει να ξεχνουσα το 2 στον αριθμητη γτ εβγαζα 1 κ αρα δν βολευε το εν λογω θεωρημα..

lack of concentration...

thnks!


 liman=1/2*lim((n+1)/n)^n=1/2*lim(1+1/n)^n=1/2*e=1.35>1 άρα αποκλίνει.
λάθος μου liman/an+1=1/2*lim((n+1)/n)^n=1/2*lim(1+1/n)^n=1/2*e=1.35>1
« Last Edit: February 04, 2011, 16:47:15 pm by dK_on_the_way » Logged
Silvershot
Θαμώνας
****
Gender: Male
Posts: 346



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #81 on: February 03, 2011, 23:37:17 pm »

Μπορει να μ πει καποιος πως βρισκω το οριο της ακολουθιας riza(n)/(n+2) ?

Edit: Το βρηκα Tongue  Απλα κανεις το n+2. riza((n+2)^2) kai το βαζεις μαζι με το n στην ιδια ριζα.
« Last Edit: February 03, 2011, 23:48:59 pm by Silvershot » Logged
ForestBlack
Εθισμένος στο ΤΗΜΜΥ.gr
*****
Posts: 607



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #82 on: February 04, 2011, 01:10:52 am »

Quote
liman=1/2*lim((n+1)/n)^n=1/2*lim(1+1/n)^n=1/2*e=1.35>1 άρα αποκλίνει.


to e που το βρηκες?
Logged
SPS
Ανερχόμενος/Ανερχόμενη
**
Gender: Male
Posts: 77


Where Did It All Go Wrong?


View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #83 on: February 04, 2011, 01:37:53 am »

Quote from: ForestBlack on February 04, 2011, 01:10:52 am
Quote
liman=1/2*lim((n+1)/n)^n=1/2*lim(1+1/n)^n=1/2*e=1.35>1 άρα αποκλίνει.


to e που το βρηκες?
ισχύει lim[(1+1/n)^n] = e άμα έχεις το βιβλίο του ξένου το έχει σελ 25-27
Logged
ForestBlack
Εθισμένος στο ΤΗΜΜΥ.gr
*****
Posts: 607



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #84 on: February 04, 2011, 01:44:09 am »

(n+1)^n         n^n +........ +1         n^n
------------ =   -------------------------- = ----------- = 1 otan n-->INF
n^n               n^n                         n^n


λαθος σκεψη προφανως

thnks
Logged
Silvershot
Θαμώνας
****
Gender: Male
Posts: 346



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #85 on: February 04, 2011, 03:20:11 am »

Πως υπολογιζω το οριο n-οστή ριζα του n^2+n+1 ?
Logged
zisis00
Καταξιωμένος/Καταξιωμένη
***
Posts: 176


View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #86 on: February 04, 2011, 03:38:37 am »

Quote from: Silvershot on February 04, 2011, 03:20:11 am
Πως υπολογιζω το οριο n-οστή ριζα του n^2+n+1 ?

Hint: a^x = e^(xlna)
Logged
gskarmou
Guest
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #87 on: February 04, 2011, 03:47:55 am »

μπορει καποιοσ να περιγραψει τ αναπτυγματα mac laurin k taylor??απ τ βιβλιο τ ξενου δεν καταλαβαινω χριστο Tongue
Logged
Silvershot
Θαμώνας
****
Gender: Male
Posts: 346



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #88 on: February 04, 2011, 03:50:20 am »

Quote from: zisis00 on February 04, 2011, 03:38:37 am
Quote from: Silvershot on February 04, 2011, 03:20:11 am
Πως υπολογιζω το οριο n-οστή ριζα του n^2+n+1 ?

Hint: a^x = e^(xlna)

Να το κανω τι?  Undecided Την ιδιοτητα αυτη τη χρησιμοποιουμε οταν θελουμε να παραγωγισουμε απο οτι θυμαμαι.
Logged
pepper ann
Μόνιμος κάτοικος ΤΗΜΜΥ.gr
******
Gender: Female
Posts: 1132



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #89 on: February 04, 2011, 14:05:46 pm »

Quote from: Silvershot on February 04, 2011, 03:20:11 am
Πως υπολογιζω το οριο n-οστή ριζα του n^2+n+1 ?
για να κάνεις cauchy το θες?
Logged
Pages: 1 ... 4 5 [6] 7 8 ... 11 Go Up Print
Jump to:  

Powered by SMF | SMF © 2006-2009, Simple Machines LLC
Scribbles2 | TinyPortal © Bloc | XHTML | CSS
Loading...