• Downloads
  • ! Read Me !
  • Μαθήματα
  • Φοιτητικά
  • Τεχνικά Θέματα
  • Συζητήσεις
  • Happy Hour!
  • About THMMY.gr
 V  < 
Search:  
Welcome, Guest. Please login or register.
November 02, 2025, 02:33:27 am

Login with username, password and session length
Links
  Thmmy.gr portal
   Forum
   Downloads
   Ενεργ. Λογαριασμού
   Επικοινωνία
  
  Χρήσιμα links
   Σελίδα τμήματος
   Βιβλιοθήκη Τμήματος
   Elearning
   Φοιτητικά fora
   Πρόγραμμα Λέσχης
   Πρακτική Άσκηση
   Ηλεκτρονική Εξυπηρέτηση Φοιτητών
   Διανομή Συγγραμμάτων
   Ψηφιακό Καταθετήριο Διπλωματικών
   Πληροφορίες Καθηγητών
   Instagram @thmmy.gr
   mTHMMY
  
  Φοιτητικές Ομάδες
   ACM
   Aristurtle
   ART
   ASAT
   BEAM
   BEST Thessaloniki
   EESTEC LC Thessaloniki
   EΜΒ Auth
   IAESTE Thessaloniki
   IEEE φοιτητικό παράρτημα ΑΠΘ
   SpaceDot
   VROOM
   Panther
  
Πίνακας Ελέγχου
Welcome, Guest. Please login or register.
November 02, 2025, 02:33:27 am

Login with username, password and session length

Αναζήτηση

Google

THMMY.gr Web
Πρόσφατα
Ταχυρρυθμα ιδιαιτερα Φυσι...
by kostisgialamas
[November 01, 2025, 23:48:04 pm]

GEFORCE RTX 3080 Ti 12GB ...
by botrinis
[November 01, 2025, 20:42:51 pm]

Αρχείο Ανακοινώσεων [Arch...
by Nikos_313
[November 01, 2025, 16:57:52 pm]

Αποτυχία δήθεν "φοιτητικώ...
by Nikos_313
[November 01, 2025, 16:24:50 pm]

Τι ακούτε αυτήν τη στιγμή...
by Katarameno
[November 01, 2025, 01:34:27 am]

Ρυθμίσεις Θεμάτων της Ανώ...
by Nikos_313
[October 31, 2025, 21:46:32 pm]

[Σ.Φ. Ηλ-Μηχ] Κινητοποίησ...
by Nikos_313
[October 31, 2025, 21:41:48 pm]

Μόνο λάθος απαντήσεις
by Nikos_313
[October 31, 2025, 19:45:44 pm]

[ΣΦ ΗΛ-ΜΗΧ] Γενική Συνέλε...
by Aris★
[October 31, 2025, 17:44:39 pm]

[Λογική Σχεδίαση] Ύλη που...
by Orgianelis
[October 31, 2025, 02:04:50 am]

Ποιο τραγούδι ακούσατε 5+...
by pesto80
[October 31, 2025, 00:06:03 am]

Πρακτική Άσκηση ΤΗΜΜΥ 201...
by Διάλεξις
[October 30, 2025, 17:19:57 pm]

[Υψηλές Τάσεις Ι] Γενικές...
by chatzikys
[October 29, 2025, 14:50:41 pm]

[Πυρηνική Τεχνολογία] Γεν...
by chatzikys
[October 29, 2025, 14:49:30 pm]

Αποτελέσματα Εξεταστικής ...
by supersonic pepega
[October 29, 2025, 14:25:43 pm]

Ποιον θεωρείτε χειρότερο...
by Katarameno
[October 29, 2025, 12:49:59 pm]

[Τεχνικές Βελτιστοποίησης...
by ttsengel
[October 28, 2025, 09:30:42 am]

Των συνειρμών το παίγνιο....
by Nikos_313
[October 27, 2025, 14:27:19 pm]

Αστείες Φωτογραφίες!
by Katarameno
[October 27, 2025, 02:18:59 am]

[ΑΡΑΓΕ Attack] Συνέλευση ...
by Aris★
[October 26, 2025, 20:16:18 pm]
Στατιστικά
Members
Total Members: 10156
Latest: drandic
Stats
Total Posts: 1428783
Total Topics: 31845
Online Today: 443
Online Ever: 2093
(April 17, 2025, 07:47:49 am)
Users Online
Users: 6
Guests: 154
Total: 160
Born_Confused
cealexop
mimaki
thomdodo
Εμφάνιση

Νέα για πρωτοετείς
Είσαι πρωτοετής;... Καλώς ήρθες! Μπορείς να βρεις πληροφορίες εδώ. Βοήθεια για τους καινούργιους μέσω χάρτη.
Κατεβάστε εδώ το Android Application για εύκολη πρόσβαση στο forum.
Ανεβάζετε τα θέματα των εξετάσεων στον τομέα Downloads με προσοχή στα ονόματα των αρχείων!

Νέα!
Πρόγραμμα Επαναληπτικής Εξεταστικής 2024-2025
THMMY.gr > Forum > Μαθήματα Βασικού Κύκλου > 1ο Εξάμηνο > Λογισμός Ι (Moderators: Tasos Bot, tzortzis, Nekt) > [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
0 Members and 1 Guest are viewing this topic.
Pages: 1 ... 4 5 [6] 7 8 ... 11 Go Down Print
Author Topic: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011  (Read 23845 times)
zisis00
Καταξιωμένος/Καταξιωμένη
***
Posts: 176


View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #75 on: February 01, 2011, 18:59:24 pm »

Quote from: hetfield on February 01, 2011, 18:57:50 pm
genika gia ola ta megalitera eth ektos 1ou diladi?

έτσι τουλάχιστον είπε ο ξένος στο μάθημα..
Logged
ForestBlack
Εθισμένος στο ΤΗΜΜΥ.gr
*****
Posts: 607



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #76 on: February 02, 2011, 14:24:19 pm »

θα μπορουσε καποιος να λυσει αυτη την ασκηση?


α) Να ελεγχθεί ως προς τη σύγκλιση της η αριθμητική σειρά .    Σ (n^n) / ((2^n) *( n!) )
Logged
dK_on_the_way
Νεούλης/Νεούλα
*
Posts: 30



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #77 on: February 03, 2011, 21:06:23 pm »

Quote from: ForestBlack on October 26, 2010, 10:09:34 am
ροθο

αν εχω καταλαβει σωστα
μια ακολουθια ειτε συκλινει ειτε απολκλινει στο +-απειρο ειτε κυμαινεται.
στο βιβλιο του ξενου στο αντιστοιχο κεφαλαιο εχει μονο τους ορισμους  κ μερικα παραδειγματα που μεσω αυτων αποδεικνυει τι κανει η ακολουθια.

ο ροθος μας εδωσε κατι ασκησεις-εργασια κ μια απο αυτες ζηταει
: Να εξεταστουν ως προς την συγκλιση οι παρακατω ακολουθιες και να βρεθουν τα ορια των.

  an= (-1)^n /2*n+1
  an=(3*n+2)/n^2 +n+1
κλπ

η απορια μου ειναι: πως ακριβως δουλευω μια τετοια ασκηση.  Tongue


Η "επίμαχη" πρώτη ακολουθία έχει όριο 1, μιας και υπακούει στον γενικότερο κανόνα μηδενική επι φραγμένη.
lim(1/2*n)=0 => liman=0+1=1.
Βέβαια ο ορισμός της ακολουθίας έχει ασάφειες.
 π.χ an=(-1)^n/(2*n+1) (όριο 0) ή
an=(-1)^n/(2*n)+1 (όριο 1 όπως προανέφερα)
Logged
pepper ann
Μόνιμος κάτοικος ΤΗΜΜΥ.gr
******
Gender: Female
Posts: 1132



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #78 on: February 03, 2011, 21:30:06 pm »

Quote from: ForestBlack on February 02, 2011, 14:24:19 pm
θα μπορουσε καποιος να λυσει αυτη την ασκηση?


α) Να ελεγχθεί ως προς τη σύγκλιση της η αριθμητική σειρά .    Σ (n^n) / ((2^n) *( n!) )
γιατί δεν δοκιμάζεις κριτήριο λόγου? Wink
Logged
ForestBlack
Εθισμένος στο ΤΗΜΜΥ.gr
*****
Posts: 607



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #79 on: February 03, 2011, 21:43:30 pm »

εφαρμοζοντας το κριτηριο του d alembert εχουμε Lim [(n+1)^n  / 2n^n] (n--> ΙΝF )

που μας κανει 1/2
αρα συγκλινει

πρεπει να ξεχνουσα το 2 στον αριθμητη γτ εβγαζα 1 κ αρα δν βολευε το εν λογω θεωρημα..

lack of concentration...

thnks!
Logged
dK_on_the_way
Νεούλης/Νεούλα
*
Posts: 30



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #80 on: February 03, 2011, 21:53:03 pm »

Quote from: ForestBlack on February 03, 2011, 21:43:30 pm
εφαρμοζοντας το κριτηριο του d alembert εχουμε Lim [(n+1)^n  / 2n^n] (n--> ΙΝF )

που μας κανει 1/2
αρα συγκλινει

πρεπει να ξεχνουσα το 2 στον αριθμητη γτ εβγαζα 1 κ αρα δν βολευε το εν λογω θεωρημα..

lack of concentration...

thnks!


 liman=1/2*lim((n+1)/n)^n=1/2*lim(1+1/n)^n=1/2*e=1.35>1 άρα αποκλίνει.
λάθος μου liman/an+1=1/2*lim((n+1)/n)^n=1/2*lim(1+1/n)^n=1/2*e=1.35>1
« Last Edit: February 04, 2011, 15:47:15 pm by dK_on_the_way » Logged
Silvershot
Θαμώνας
****
Gender: Male
Posts: 346



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #81 on: February 03, 2011, 22:37:17 pm »

Μπορει να μ πει καποιος πως βρισκω το οριο της ακολουθιας riza(n)/(n+2) ?

Edit: Το βρηκα Tongue  Απλα κανεις το n+2. riza((n+2)^2) kai το βαζεις μαζι με το n στην ιδια ριζα.
« Last Edit: February 03, 2011, 22:48:59 pm by Silvershot » Logged
ForestBlack
Εθισμένος στο ΤΗΜΜΥ.gr
*****
Posts: 607



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #82 on: February 04, 2011, 00:10:52 am »

Quote
liman=1/2*lim((n+1)/n)^n=1/2*lim(1+1/n)^n=1/2*e=1.35>1 άρα αποκλίνει.


to e που το βρηκες?
Logged
SPS
Ανερχόμενος/Ανερχόμενη
**
Gender: Male
Posts: 77


Where Did It All Go Wrong?


View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #83 on: February 04, 2011, 00:37:53 am »

Quote from: ForestBlack on February 04, 2011, 00:10:52 am
Quote
liman=1/2*lim((n+1)/n)^n=1/2*lim(1+1/n)^n=1/2*e=1.35>1 άρα αποκλίνει.


to e που το βρηκες?
ισχύει lim[(1+1/n)^n] = e άμα έχεις το βιβλίο του ξένου το έχει σελ 25-27
Logged
ForestBlack
Εθισμένος στο ΤΗΜΜΥ.gr
*****
Posts: 607



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #84 on: February 04, 2011, 00:44:09 am »

(n+1)^n         n^n +........ +1         n^n
------------ =   -------------------------- = ----------- = 1 otan n-->INF
n^n               n^n                         n^n


λαθος σκεψη προφανως

thnks
Logged
Silvershot
Θαμώνας
****
Gender: Male
Posts: 346



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #85 on: February 04, 2011, 02:20:11 am »

Πως υπολογιζω το οριο n-οστή ριζα του n^2+n+1 ?
Logged
zisis00
Καταξιωμένος/Καταξιωμένη
***
Posts: 176


View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #86 on: February 04, 2011, 02:38:37 am »

Quote from: Silvershot on February 04, 2011, 02:20:11 am
Πως υπολογιζω το οριο n-οστή ριζα του n^2+n+1 ?

Hint: a^x = e^(xlna)
Logged
gskarmou
Guest
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #87 on: February 04, 2011, 02:47:55 am »

μπορει καποιοσ να περιγραψει τ αναπτυγματα mac laurin k taylor??απ τ βιβλιο τ ξενου δεν καταλαβαινω χριστο Tongue
Logged
Silvershot
Θαμώνας
****
Gender: Male
Posts: 346



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #88 on: February 04, 2011, 02:50:20 am »

Quote from: zisis00 on February 04, 2011, 02:38:37 am
Quote from: Silvershot on February 04, 2011, 02:20:11 am
Πως υπολογιζω το οριο n-οστή ριζα του n^2+n+1 ?

Hint: a^x = e^(xlna)

Να το κανω τι?  Undecided Την ιδιοτητα αυτη τη χρησιμοποιουμε οταν θελουμε να παραγωγισουμε απο οτι θυμαμαι.
Logged
pepper ann
Μόνιμος κάτοικος ΤΗΜΜΥ.gr
******
Gender: Female
Posts: 1132



View Profile
Re: [Λογισμός Ι] Απορίες σε ασκήσεις 2010/2011
« Reply #89 on: February 04, 2011, 13:05:46 pm »

Quote from: Silvershot on February 04, 2011, 02:20:11 am
Πως υπολογιζω το οριο n-οστή ριζα του n^2+n+1 ?
για να κάνεις cauchy το θες?
Logged
Pages: 1 ... 4 5 [6] 7 8 ... 11 Go Up Print
Jump to:  

Powered by SMF | SMF © 2006-2009, Simple Machines LLC
Scribbles2 | TinyPortal © Bloc | XHTML | CSS
Loading...