Τέλεια μόλις βρήκα τις ρίζες...

\!\({{tn -> \((\(-4\)\ kh\
kp\ td - 4\ td\^2 - 16\ kh\ kp\ td\^2 -
8\ kh\ kp\ td\^3 + 4\ kh\ kp\ tp1 + 8\ td\ tp1 + 32\ kh\ kp\ td\
\ tp1 + 16\ kh\ kp\ td\^2\ tp1 - 8\ tp1\^2 - 24\ kh\ kp\ tp1\^2 - 48\ kh\ kp\ \
td\ tp1\^2 + 32\ kh\ kp\ tp1\^3 - 4\ kh\ kp\ tp2 - 8\ td\ tp2 - 32\
kh\ kp\ td\ tp2 - 16\ kh\ kp\ td\^2\ tp2 + 8\ tp1\
tp2 + 32\ kh\ kp\ tp1\
tp2 + 32\ kh\ kp\ td\ tp1\ tp2 - 48\ kh\ kp\ tp1\^2\ tp2 - 8\ \
tp2\^2 - 24\ kh\ kp\ tp2\^2 - 48\ kh\ kp\ td\ tp2\^2 + 48\ kh\ kp\ tp1\
tp2\^2 - 32\ kh\ kp\ tp2\^3 - √\((\((4\ kh\ kp\ td + 4\
td\^2 + 16\ kh\ kp\ td\^2 + 8\ kh\ kp\ td\^3 -
4\ kh\ kp\ tp1 - 8\ td\ tp1 - 32\ kh\ kp\ td\ tp1 - 16\ kh\ kp\ \
td\^2\ tp1 + 8\ tp1\^2 + 24\ kh\ kp\ tp1\^2 + 48\ kh\ kp\ td\
tp1\^2 - 32\ kh\ kp\ tp1\^3 + 4\ kh\ kp\ tp2 + 8\ td\
tp2 + 32\ kh\ kp\ td\ tp2 + 16\ kh\ kp\ td\^2\
tp2 - 8\ tp1\ tp2 - 32\ kh\
kp\ tp1\ tp2 - 32\ kh\ kp\ td\ tp1\ tp2 +
48\ kh\ kp\ tp1\^2\ tp2 + 8\ tp2\^2 + 24\ kh\ kp\
tp2\^2 + 48\ kh\ kp\ td\ tp2\^2 - 48\ kh\ kp\ tp1\ tp2\^2 + 32\ \
kh\ kp\ tp2\^3)\)\^2 - 4\ \((
8\ kh\ kp\ td\^2 - 16\ kh\ kp\ td\ tp1 +
8\ kh\ kp\ tp1\^2 + 16\ kh\ kp\ td\ tp2 - 16\ kh\ \
kp\ tp1\ tp2 + 8\ kh\ kp\ tp2\^2)\)\ \((1 + kh\ kp + 2\ td + 8\ kh\ kp\ td +
2\ td\^2 + 10\ kh\ kp\ td\^2 + 4\ kh\ kp\ td\^3 - 2\
\ tp1 - 8\ kh\ kp\ tp1 - 4\ td\ tp1 - 20\
kh\ kp\ td\
tp1 + 4\ td\^2\ tp1 + 8\ kh\ kp\ td\^3\ tp1 + 12\ \
tp1\^2 + 24\ kh\ kp\ tp1\^2 + 8\ td\ tp1\^2 + 56\ kh\ kp\ td\ tp1\^2 + 8\ kh\
kp\ td\^2\ tp1\^2 - 8\ tp1\^3 - 48\ kh\ kp\ tp1\^3 \
- 32\ kh\ kp\ td\ tp1\^3 + 16\ kh\ kp\
tp1\^4 + 2\ tp2 + 8\ kh\ kp\ tp2 + 4\ td\ tp2 + 20\ \
kh\ kp\ td\ tp2 -
4\ td\^2\ tp2 - 8\ kh\ kp\ td\^3\ tp2 - 4\ tp1\ tp2 \
- 20\ kh\ kp\ tp1\ tp2 + 8\ td\ tp1\ tp2 + 32\ kh\ kp\
td\^2\ tp1\ tp2 + 8\ tp1\^2\ tp2 + 56\ kh\ kp\ \
tp1\^2\ tp2 + 16\ kh\ kp\
td\ tp1\^2\ tp2 - 32\ kh\ kp\ tp1\^3\ tp2 + 12\ tp2\
\^2 + 24\ kh\ kp\ tp2\^2 + 8\ td\ tp2\^2 + 56\ kh\ kp\ td\ tp2\^2 + 8\ kh\
kp\ td\^2\ tp2\^2 - 8\ tp1\ tp2\^2 - 56\ kh\ kp\ tp1\ tp2\^2 - \
16\ kh\ kp\ td\ tp1\ tp2\^2 + 32\ kh\ kp\ tp1\^2\ tp2\^2 + 8\ tp2\^3 + 48\ kh\
\ kp\ tp2\^3 + 32\ kh\ kp\ td\ tp2\^3 - 32\ kh\ kp\ tp1\ tp2\^3 +
16\ kh\ kp\ tp2\^4)\))\))\)/\((2\ \((8\ kh\ kp\
td\^2 - 16\ kh\ kp\ td\ tp1 + 8\ kh\ kp\ tp1\^2 +
16\ kh\ kp\
td\ tp2 - 16\
kh\ kp\ tp1\ tp2 + 8\ kh\ kp\ tp2\^2)\))\)}, {tn -> \((\(-4\)\
\ kh\ kp\ td - 4\ td\^2 - 16\ kh\ kp\ td\^2 - 8\ kh\ kp\ td\^3 + 4\ kh\ kp\ \
tp1 + 8\ td\ tp1 + 32\ kh\ kp\
td\ tp1 + 16\ kh\ kp\ td\^2\ tp1 - 8\ tp1\^2 - 24\ kh\ kp\ \
tp1\^2 - 48\ kh\ kp\ td\ tp1\^2 + 32\ kh\ kp\ tp1\^3 - 4\
kh\ kp\ tp2 - 8\ td\ tp2 - 32\ kh\ kp\ td\ tp2 - 16\ kh\ kp\
td\^2\ tp2 + 8\ tp1\ tp2 + 32\ kh\ kp\ tp1\
tp2 + 32\ kh\ kp\ td\ tp1\ tp2 -
48\ kh\ kp\ tp1\^2\ tp2 - 8\ tp2\^2 -
24\ kh\ kp\ tp2\^2 - 48\ kh\ kp\ td\ tp2\^2 + 48\ kh\ kp\ tp1\ \
tp2\^2 - 32\ kh\ kp\ tp2\^3 + √\((\((
4\ kh\ kp\ td + 4\ td\^2 + 16\ kh\ kp\ td\^2 + 8\ \
kh\ kp\ td\^3 - 4\ kh\ kp\ tp1 - 8\ td\ tp1 - 32\
kh\ kp\ td\ tp1 - 16\ kh\ kp\ td\^2\
tp1 + 8\ tp1\^2 +
24\ kh\ kp\ tp1\^2 + 48\ kh\ kp\ td\ tp1\^2 - 32\ \
kh\ kp\ tp1\^3 + 4\ kh\ kp\ tp2 + 8\ td\ tp2 + 32\ kh\
kp\ td\ tp2 + 16\ kh\ kp\ td\^2\ tp2 - 8\ tp1\ \
tp2 - 32\ kh\ kp\ tp1\ tp2 - 32\ kh\ kp\ td\ tp1\ tp2 + 48\ kh\ kp\ tp1\^2\ \
tp2 + 8\ tp2\^2 + 24\ kh\ kp\ tp2\^2 + 48\ kh\ kp\ td\ tp2\^2 - 48\ kh\ kp\ \
tp1\ tp2\^2 + 32\ kh\ kp\ tp2\^3)\)\^2 - 4\ \((8\ kh\ kp\ td\^2 - 16\ kh\ kp\ \
td\ tp1 + 8\ kh\ kp\ tp1\^2 + 16\ kh\ kp\ td\ tp2 - 16\ kh\ kp\ tp1\ tp2 + 8\ \
kh\ kp\ tp2\^2)\)\ \((1 + kh\ kp + 2\ td + 8\ kh\ kp\ td + 2\ td\^2 + 10\ kh\ \
kp\ td\^2 + 4\ kh\ kp\ td\^3 - 2\ tp1 - 8\ kh\ kp\ tp1 - 4\ td\ tp1 -
20\ kh\ kp\ td\ tp1 + 4\ td\^2\ tp1 + 8\ kh\
kp\ td\^3\ tp1 + 12\ tp1\^2 + 24\ kh\ kp\ tp1\^2 \
+ 8\ td\ tp1\^2 + 56\
kh\ kp\ td\ tp1\^2 + 8\ kh\ kp\ td\^2\ tp1\^2 - 8\ tp1\^3 - 48\ kh\ \
kp\ tp1\^3 - 32\ kh\ kp\ td\ tp1\^3 + 16\ kh\ kp\ tp1\^4 + 2\ tp2 +
8\ kh\ kp\ tp2 + 4\ td\ tp2 + 20\ kh\ kp\ td\ tp2 - 4\ \
td\^2\ tp2 - 8\ kh\ kp\ td\^3\ tp2 - 4\ tp1\ tp2 - 20\ kh\ kp\ tp1\ tp2 + 8\
td\ tp1\
tp2 + 32\ kh\ kp\ td\^2\ tp1\ tp2 + 8\ tp1\^2\ tp2 + 56\
kh\ kp\ tp1\^2\ tp2 + 16\
kh\ kp\ td\ tp1\^2\ tp2 - 32\ kh\ kp\ tp1\^3\ tp2 + \
12\ tp2\^2 + 24\ kh\ kp\ tp2\^2 + 8\ td\ tp2\^2 + 56\ kh\ kp\ td\ tp2\^2 +
8\ kh\ kp\ td\^2\ tp2\^2 - 8\ tp1\ tp2\^2 - 56\ kh\
kp\ tp1\ tp2\^2 - 16\ kh\ kp\ td\ tp1\ tp2\^2 + 32\ \
kh\ kp\ tp1\^2\ tp2\^2 + 8\ tp2\^3 + 48\ kh\ kp\ tp2\^3 + 32\ kh\ kp\ td\ tp2\
\^3 - 32\ kh\ kp\ tp1\ tp2\^3 + 16\ kh\ kp\ tp2\^4)\))\))\)/\((2\ \((
8\ kh\ kp\ td\^2 - 16\ kh\ kp\ td\ tp1 + 8\ kh\ kp\ \
tp1\^2 + 16\ kh\ kp\ td\ tp2 - 16\
kh\ kp\ tp1\ tp2 + 8\ kh\ kp\ tp2\^2)\))\)}}\)