• Downloads
  • ! Read Me !
  • Μαθήματα
  • Φοιτητικά
  • Τεχνικά Θέματα
  • Συζητήσεις
  • Happy Hour!
  • About THMMY.gr
 V  < 
Search:  
Welcome, Guest. Please login or register.
June 19, 2025, 23:01:03 pm

Login with username, password and session length
Links
  Thmmy.gr portal
   Forum
   Downloads
   Ενεργ. Λογαριασμού
   Επικοινωνία
  
  Χρήσιμα links
   Σελίδα τμήματος
   Βιβλιοθήκη Τμήματος
   Elearning
   Φοιτητικά fora
   Πρόγραμμα Λέσχης
   Πρακτική Άσκηση
   Ηλεκτρονική Εξυπηρέτηση Φοιτητών
   Διανομή Συγγραμμάτων
   Ψηφιακό Καταθετήριο Διπλωματικών
   Πληροφορίες Καθηγητών
   Instagram @thmmy.gr
   mTHMMY
  
  Φοιτητικές Ομάδες
   ACM
   Aristurtle
   ART
   ASAT
   BEAM
   BEST Thessaloniki
   EESTEC LC Thessaloniki
   EΜΒ Auth
   IAESTE Thessaloniki
   IEEE φοιτητικό παράρτημα ΑΠΘ
   SpaceDot
   VROOM
   Panther
  
Πίνακας Ελέγχου
Welcome, Guest. Please login or register.
June 19, 2025, 23:01:03 pm

Login with username, password and session length

Αναζήτηση

Google

THMMY.gr Web
Πρόσφατα
Αντικατάστασης πυκνωτή σε...
by chatzikys
[Today at 21:57:19]

[Μικροκυματική Τεχνολογία...
by Wibvious
[Today at 21:43:39]

H Στοά των Off Topic
by Nikos_313
[Today at 21:08:13]

Aναζωπύρωση των εχθροπραξ...
by Katarameno
[Today at 15:09:50]

[Τεχνολογία Ηλεκτροτεχνικ...
by nectar
[Today at 14:46:20]

Ορκομωσία Εαρινού Εξαμήνο...
by Mr Watson
[Today at 09:55:52]

Πότε θα βγει το μάθημα; -...
by tzortzis
[Today at 07:09:33]

Ισραήλ - Ιράν: Πόλεμος στ...
by Katarameno
[June 18, 2025, 19:40:47 pm]

[ΣΗΕ ΙΙ] Γενικές απορίες ...
by chatzikys
[June 18, 2025, 19:26:00 pm]

Σιδηροδρομικό Δυστύχημα σ...
by Katarameno
[June 18, 2025, 18:22:39 pm]

[Μεταφορά και Διανομή ΗΕ]...
by tzortzis
[June 18, 2025, 07:55:05 am]

Πρακτική Άσκηση ΤΗΜΜΥ 201...
by chris_p30
[June 18, 2025, 00:45:33 am]

[Ψηφιακά Ολοκληρωμένα Κυκ...
by tzortzis
[June 17, 2025, 21:25:42 pm]

[Εφ.Θερμοδυναμική] Γενικέ...
by PAPARI69
[June 17, 2025, 20:59:13 pm]

[Γραφική] Λυμένα θέματα
by okanpala
[June 17, 2025, 18:56:22 pm]

Τι ακούτε αυτήν τη στιγμή...
by Katarameno
[June 17, 2025, 14:25:00 pm]

Αποτελέσματα Εξεταστικής ...
by george14
[June 17, 2025, 12:08:25 pm]

[ΨEE] Γενικές απορίες και...
by Juror8
[June 17, 2025, 12:06:57 pm]

[Οργάνωση Υπολογιστών] Γε...
by RAFI
[June 16, 2025, 22:46:54 pm]

[Σ.Π.Η.Ε.] Γενικές απορίε...
by Nikos_313
[June 16, 2025, 19:49:00 pm]
Στατιστικά
Members
Total Members: 9965
Latest: Poli
Stats
Total Posts: 1426735
Total Topics: 31711
Online Today: 250
Online Ever: 2093
(April 17, 2025, 08:47:49 am)
Users Online
Users: 43
Guests: 119
Total: 162
Konstantina Karamani
cpapadd
leukosaraphs!
ellimoschou
thanosk
ariadnipm
soktas
Foxtrooper
eed
Mikekmp
esroussou
pipitsenko
Balourdos
Mr Watson
kourkou
mkoutsouk
arkou
chaniotism
nick_ch
dimitrisblioumis
Gaspard
kkotsopo
κοτζακ
waterfall101
andripappa
Nikos_313
dkonst
AODON
Born_Confused
Denisivo
Napoleontas
kmathio
dmadarak
aplos paratiritis
kkon
ggalamat
kokkinosgior
Theislander
bit11
Εμφάνιση

Νέα για πρωτοετείς
Είσαι πρωτοετής;... Καλώς ήρθες! Μπορείς να βρεις πληροφορίες εδώ. Βοήθεια για τους καινούργιους μέσω χάρτη.
Κατεβάστε εδώ το Android Application για εύκολη πρόσβαση στο forum.
Ανεβάζετε τα θέματα των εξετάσεων στον τομέα Downloads με προσοχή στα ονόματα των αρχείων!

Νέα!
Ανεβάζετε τα θέματα των εξετάσεων στον τομέα Downloads
με προσοχή στα ονόματα των αρχείων!
THMMY.gr > Forum > Μαθήματα Βασικού Κύκλου > 4ο Εξάμηνο > Θεωρία Πιθανοτήτων και Στατιστική (Moderators: chatzikys, tzortzis, Nekt) >  [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
0 Members and 1 Guest are viewing this topic.
Pages: 1 2 3 [4] Go Down Print
Author Topic: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13  (Read 9287 times)
Mitc
Ανερχόμενος/Ανερχόμενη
**
Gender: Male
Posts: 97



View Profile
Re: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
« Reply #45 on: September 22, 2013, 16:13:45 pm »

Θέμα 2β Ιούλιος 2012???  Roll Eyes
Logged

Don't wait for the perfect moment...Grab the moment and make it perfect
Mitc
Ανερχόμενος/Ανερχόμενη
**
Gender: Male
Posts: 97



View Profile
Re: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
« Reply #46 on: September 22, 2013, 16:24:14 pm »

Quote from: Exomag on September 22, 2013, 15:59:46 pm
Quote from: galexang on September 22, 2013, 15:18:13 pm
Μπορεί κάποιος να λύσει το 1ο θέμα απο τον Φεβρουάριο 2012;(πέφτει συχνα σαν θέμα...)

Φεβρουάριος 2012 - Θέμα 1ο

α) Pα=(1-0.7)*(1-0.7)=0.09

β) Pβ=P1*0.7+P2*0.7*0.7

γ) Bayes: Pγ=(1*P0)/Pβ

Για το β) μήπως αντί για 0.7 είναι 0.3?
Logged

Don't wait for the perfect moment...Grab the moment and make it perfect
Exomag
Veteran
Διεστραμμένος
******
Gender: Male
Posts: 22045


unfortunate...


View Profile
Re: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
« Reply #47 on: September 22, 2013, 16:32:37 pm »

Quote from: Mitc on September 22, 2013, 16:24:14 pm
Quote from: Exomag on September 22, 2013, 15:59:46 pm
Quote from: galexang on September 22, 2013, 15:18:13 pm
Μπορεί κάποιος να λύσει το 1ο θέμα απο τον Φεβρουάριο 2012;(πέφτει συχνα σαν θέμα...)

Φεβρουάριος 2012 - Θέμα 1ο

α) Pα=(1-0.7)*(1-0.7)=0.09

β) Pβ=P1*0.7+P2*0.7*0.7

γ) Bayes: Pγ=(1*P0)/Pβ

Για το β) μήπως αντί για 0.7 είναι 0.3?

Βλακεία μου, δίκιο έχεις Wink
Logged

megali mpougatsa
Μόνιμος κάτοικος ΤΗΜΜΥ.gr
******
Gender: Male
Posts: 1377



View Profile
Re: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
« Reply #48 on: September 22, 2013, 16:38:03 pm »

Quote from: galexang on September 22, 2013, 15:18:13 pm
Μπορεί κάποιος να λύσει το 1ο θέμα απο τον Φεβρουάριο 2012;(πέφτει συχνα σαν θέμα...)

"Ποιά η πιθανότητα ότι η συσκευή δεν θα εντοπίσει ράγισμα στην συγκόλληση;"

εγώ το διαβάζω με 2 διαφορετικές ερμηνείες:

i.) Ποια η πιθανότητα πως υπάρχει ράγισμα και η μηχανή δεν το εντοπίζει  (Αυτό που λέτε)
ιι.) Ποια η πιθανοτητα γενικά η μηχανή να βγάζει έξοδο "δεν υπάρχει ράγισμα". (Αυτό που λέτε + p0)

Edit: Δε βαριέσαι, καλά είμαστε  ...
« Last Edit: September 22, 2013, 16:45:56 pm by somerain » Logged
Exomag
Veteran
Διεστραμμένος
******
Gender: Male
Posts: 22045


unfortunate...


View Profile
Re: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
« Reply #49 on: September 22, 2013, 17:18:31 pm »

Quote from: somerain on September 22, 2013, 16:38:03 pm
Quote from: galexang on September 22, 2013, 15:18:13 pm
Μπορεί κάποιος να λύσει το 1ο θέμα απο τον Φεβρουάριο 2012;(πέφτει συχνα σαν θέμα...)

"Ποιά η πιθανότητα ότι η συσκευή δεν θα εντοπίσει ράγισμα στην συγκόλληση;"

εγώ το διαβάζω με 2 διαφορετικές ερμηνείες:

i.) Ποια η πιθανότητα πως υπάρχει ράγισμα και η μηχανή δεν το εντοπίζει  (Αυτό που λέτε)
ιι.) Ποια η πιθανοτητα γενικά η μηχανή να βγάζει έξοδο "δεν υπάρχει ράγισμα". (Αυτό που λέτε + p0)

Edit: Δε βαριέσαι, καλά είμαστε  ...

Θέμα σύνταξης είναι αυτό, εφόσον καταλαβαίνεις και τα δύο ερωτήματα πως λύνονται είσαι ok Wink
Logged

georgopk
Καταξιωμένος/Καταξιωμένη
***
Posts: 137


View Profile
Re: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
« Reply #50 on: September 22, 2013, 17:24:24 pm »

Quote from: Mitc on September 22, 2013, 03:16:02 am
Quote from: georgopk on September 21, 2013, 23:39:31 pm
Θέμα 4ο Ιούνιος 2012 ομάδα θεμάτων Α

Για να πάρουμε κανονική κατανομή κανονικά δεν πρέπει να έχουμε ακραίες τιμές. Στη συγκεκριμένη περίπτωση μπορούμε να θεωρήσουμε κανονική κατανομή; χρειάζεται να απορρίψουμε τις ακραίες τιμές (αυτό δεν επηρεάζει τη μέση τιμή κτλ που μας δίνει; )
Γενικότερα πως λύνεται;

Στο (α) θέλει τα προφανή; δηλαδή να πούμε αν είναι κανονική, συμμετρική κτλ και να συγκρίνουμε τις μέσες τιμές κτλ που δίνει;

Quote from: Mitc on September 21, 2013, 18:41:16 pm
Θέμα 4γ Ιούνιος 2012 Α' ομάδα θα θεωρήσουμε ότι η κατανομή των παρατηρήσεων του καινούριου δείγματος είναι κανονική?
Γιατί αλλιώς πως θα είναι κανονική και η κατανομή της μέσης τιμής (αφού το n<30) για να πάρουμε τους τύπους?

Αν στα προηγούμενα δεχτούμε κανονική κατανομή, τότε πιστεύω πως μπορούμε να πούμε ανεξάρτητα από το πλήθος των παρατηρήσεων οτι γενικά η ED ακολουθεί κανονική κατανομή. Από 'κεί και πέρα για το (γ) τα γνωστά που αφορούν τα διαστήματα εμπιστοσύνης της κανονικής κατανομής.

Δεν ξέρω τι παίζει με τη μέση τιμή...Πάντως σίγουρα μπορείς να πάρεις τους τύπους για κανονική κατανομή της μέσης τιμής γιατί έχεις n>30 παρατηρήσεις. Στο γ έχεις και n<30 και δεν ξέρεις αν είναι κανονική οπότε πως θα πεις ότι η μέση τιμή ακολουθεί κι αυτή κανονική?

Κοίτα για το (β) έχεις ένα δίκιο εδώ που τα λέμε, αλλά για το (γ) έχω κολλήσει ας βοηθήσει κάποιος που έχει πιο σίγουρη απάντηση!
Logged
Exomag
Veteran
Διεστραμμένος
******
Gender: Male
Posts: 22045


unfortunate...


View Profile
Re: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
« Reply #51 on: September 22, 2013, 17:36:23 pm »

Quote from: Mitc on September 22, 2013, 16:13:45 pm
Θέμα 2β Ιούλιος 2012???  Roll Eyes

Ο μέσος αριθμός ημερών μεταξύ δύο διαδοχικών διακοπών είναι, εξ ορισμού, ο μέσος όρος της γεωμετρικής κατανομής που θα έχει p=πιθανότητα διακοπής ρεύματος σε μια μέρα (αυτό που βρήκες στο ερώτημα α).
Logged

georgopk
Καταξιωμένος/Καταξιωμένη
***
Posts: 137


View Profile
Re: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
« Reply #52 on: September 22, 2013, 17:38:01 pm »

Quote from: Mitc on September 22, 2013, 03:20:29 am
Quote

Στο α) βρίσκω  -e^-1 + e^-3/4~=0,1

στο (β) θα πρέπει να πάρουμε τον τύπο από την poisson;;; αν είναι έτσι, βρήκα 1/(2e). Ισχύει;;;
 

Ποιος είναι ο τύπος της Poisson? Γιατί σελίδα 299 παίρνει αυτόν τον τύπο?

Για τύπο της Poisson ξέρω τον e-λt(λt)x/(x!)
στη σελίδα 299 δεν κατάλαβα γιατί χρησιμοποιεί άλλον. Πάντως δε μου φαίνεται σωστός.
Logged
megali mpougatsa
Μόνιμος κάτοικος ΤΗΜΜΥ.gr
******
Gender: Male
Posts: 1377



View Profile
Re: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
« Reply #53 on: September 22, 2013, 18:41:54 pm »

Quote from: Exomag on September 22, 2013, 17:18:31 pm
Θέμα σύνταξης είναι αυτό, εφόσον καταλαβαίνεις και τα δύο ερωτήματα πως λύνονται είσαι ok Wink

ευχαριστώ!  Smiley

Quote from: Exomag on September 22, 2013, 17:36:23 pm
Quote from: Mitc on September 22, 2013, 16:13:45 pm
Θέμα 2β Ιούλιος 2012???  Roll Eyes

Ο μέσος αριθμός ημερών μεταξύ δύο διαδοχικών διακοπών είναι, εξ ορισμού, ο μέσος όρος της γεωμετρικής κατανομής που θα έχει p=πιθανότητα διακοπής ρεύματος σε μια μέρα (αυτό που βρήκες στο ερώτημα α).

Η απορία του Mitc (και δική μου πλέον!) είναι στο 2β του Ιουνίου, εσύ βλέπεις του Φεβρουαρίου.
« Last Edit: September 22, 2013, 18:57:02 pm by somerain » Logged
georgopk
Καταξιωμένος/Καταξιωμένη
***
Posts: 137


View Profile
Re: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
« Reply #54 on: September 22, 2013, 23:26:32 pm »

Quote from: georgopk on September 22, 2013, 17:24:24 pm
Quote from: Mitc on September 22, 2013, 03:16:02 am
Quote from: georgopk on September 21, 2013, 23:39:31 pm
Θέμα 4ο Ιούνιος 2012 ομάδα θεμάτων Α

Για να πάρουμε κανονική κατανομή κανονικά δεν πρέπει να έχουμε ακραίες τιμές. Στη συγκεκριμένη περίπτωση μπορούμε να θεωρήσουμε κανονική κατανομή; χρειάζεται να απορρίψουμε τις ακραίες τιμές (αυτό δεν επηρεάζει τη μέση τιμή κτλ που μας δίνει; )
Γενικότερα πως λύνεται;

Στο (α) θέλει τα προφανή; δηλαδή να πούμε αν είναι κανονική, συμμετρική κτλ και να συγκρίνουμε τις μέσες τιμές κτλ που δίνει;

Quote from: Mitc on September 21, 2013, 18:41:16 pm
Θέμα 4γ Ιούνιος 2012 Α' ομάδα θα θεωρήσουμε ότι η κατανομή των παρατηρήσεων του καινούριου δείγματος είναι κανονική?
Γιατί αλλιώς πως θα είναι κανονική και η κατανομή της μέσης τιμής (αφού το n<30) για να πάρουμε τους τύπους?

Αν στα προηγούμενα δεχτούμε κανονική κατανομή, τότε πιστεύω πως μπορούμε να πούμε ανεξάρτητα από το πλήθος των παρατηρήσεων οτι γενικά η ED ακολουθεί κανονική κατανομή. Από 'κεί και πέρα για το (γ) τα γνωστά που αφορούν τα διαστήματα εμπιστοσύνης της κανονικής κατανομής.

Δεν ξέρω τι παίζει με τη μέση τιμή...Πάντως σίγουρα μπορείς να πάρεις τους τύπους για κανονική κατανομή της μέσης τιμής γιατί έχεις n>30 παρατηρήσεις. Στο γ έχεις και n<30 και δεν ξέρεις αν είναι κανονική οπότε πως θα πεις ότι η μέση τιμή ακολουθεί κι αυτή κανονική?

Κοίτα για το (β) έχεις ένα δίκιο εδώ που τα λέμε, αλλά για το (γ) έχω κολλήσει ας βοηθήσει κάποιος που έχει πιο σίγουρη απάντηση!

Τώρα που το ξαναείδα, νομίζω πως δε μας ενδιαφέρει αν η ED ακολουθεί κανονική κατανομή. Την μέση τιμή τη βρίσκουμε από το ημιάθροισμα των άκρων του διαστήματος (8+16)/2 ή (7+17)/2. (Ανάλογα την ομάδα θεμάτων)
Για τη διασπορά (και κατ επέκταση και την τυπική απόκλιση) θα πάρουμε τον τύπο της κατανομής Χ2 που δίνεται στο τυπολόγιο.
Δεν παίρνω και όρκο, αλλά με μια γρήγορη ματιά στις σημειώσεις του δεν είδα να λέει οτι η σ2 ακολουθεί κατανομή Χ2 μόνο αν η τυχαία μεταβλητή του προβλήματος (εδώ η ED) ακολουθεί κανονική. Αυτό που βρήκα είναι οτι η Χ2 προσεγγίζεται από την κανονική για μεγάλα n. Κατά συνέπεια υποθέτω οτι αν είχαμε μεγάλο πλήθος, αντί για τους τύπους της Χ2 θα μπορούσαμε να χρησιμοποιήσουμε για το διάστημα εμπιστοσύνης τους τύπους της κανονικής.

Ας επιβεβαιώσει κάποιος έστω και για τους επόμενους!
Logged
Mitc
Ανερχόμενος/Ανερχόμενη
**
Gender: Male
Posts: 97



View Profile
Re: [Πιθανότητες] Απορίες στις Ασκήσεις 12-13
« Reply #55 on: September 22, 2013, 23:30:40 pm »

Quote from: georgopk on September 22, 2013, 23:26:32 pm

Τώρα που το ξαναείδα, νομίζω πως δε μας ενδιαφέρει αν η ED ακολουθεί κανονική κατανομή. Την μέση τιμή τη βρίσκουμε από το ημιάθροισμα των άκρων του διαστήματος (8+16)/2 ή (7+17)/2. (Ανάλογα την ομάδα θεμάτων)
Για τη διασπορά (και κατ επέκταση και την τυπική απόκλιση) θα πάρουμε τον τύπο της κατανομής Χ2 που δίνεται στο τυπολόγιο.
Δεν παίρνω και όρκο, αλλά με μια γρήγορη ματιά στις σημειώσεις του δεν είδα να λέει οτι η σ2 ακολουθεί κατανομή Χ2 μόνο αν η τυχαία μεταβλητή του προβλήματος (εδώ η ED) ακολουθεί κανονική. Αυτό που βρήκα είναι οτι η Χ2 προσεγγίζεται από την κανονική για μεγάλα n. Κατά συνέπεια υποθέτω οτι αν είχαμε μεγάλο πλήθος, αντί για τους τύπους της Χ2 θα μπορούσαμε να χρησιμοποιήσουμε για το διάστημα εμπιστοσύνης τους τύπους της κανονικής.

Ας επιβεβαιώσει κάποιος έστω και για τους επόμενους!

Αν το πλήθος ήταν μεγάλο θα παίρναμε ότι είναι κανονική η κατανομή της μέσης τιμής (θεωρία) άρα θα παίρναμε τον αντίστοιχο τύπο.
Τώρα ????
Logged

Don't wait for the perfect moment...Grab the moment and make it perfect
Pages: 1 2 3 [4] Go Up Print
Jump to:  

Powered by SMF | SMF © 2006-2009, Simple Machines LLC
Scribbles2 | TinyPortal © Bloc | XHTML | CSS
Loading...